
Refresh, renew, refactor
Modernising a large Android app with many users

Maia Grotepass
Android Engineer
@maiatoday
maiatoday

Andrey Liashuk
Android Engineer
andrey-liashuk-607602164
AndrewLiashuk

Intro and stats*

Luno makes it safe and easy to
buy, store and learn about
cryptocurrencies

~1.35M active Android users

40 countries

First commit Friday 25 July 2014

329 fragment layouts

8918 lines of Java code

250912 lines of Kotlin code

51941 lines of xml

Luno app

* as of 1 Oct 2020

Tests! 🤩tests?

Java
MVVM no Jetpack/Burrito🌯
Activity + Fragments
Asynctask
Json REST + Retrofit
Eventbus

Kotlin
MVVM
Activity + Fragments
Coroutines
Protobuf REST + Retrofit

Past Future

Refactor
Restructuring
existing code
without changing
behaviour*

Refactor / Migrate

Migrate
Move code from one
system to another*

Java to Kotlin migration

* paraphrased from Wikipedia

Why?

Andrey

● Kotlin migration
● Migration tips
● Event bus and coroutines
● Protobuf migration

Agenda

Maia

● Architecture
● Team
● CI / CD
● What’s next

Overview

How to start migration?

Don’t convert everything to Kotlin

1. Prepare product request

Product request is a document describing the
problems, goal and measure of success.

⛔ Classes to be deleted

⛔ Legacy classes

⛔ Complicated third party classes

2. Define сhampion

Сhampion

a person responsible:

● know the status

● track progress

Champion is not alone, tasks can be
created and divided in the team.

What is a design document?

● describes a problem and
solutions

● free form or template

● scope of work as complete as
possible

● used for time estimate

3. Create a Design Doc

4. Burden-sharing

The migration will finish faster if the

whole team takes part in it.

Kotlin Conversion Tips

Do refactoring Create unit tests

Don't trust converter Always test changes

public static String getDeviceName(String codename,

 String model,

 String fallback) {

 String marketName = getDeviceInfo(context(), codename, model).marketName;

 return marketName == null ? fallback : marketName;

}

If you are tired,
just rest

Ask for review

Don't try to change the world in
one pull request

Stick to the rule: one request solves
one problem.

Review process

It is better to create requests as small
as possible!

What is a small request?

● If class size <= 100 lines or
small data class

3-5 classes per request.

How to understand how big the diff is?

🤔 based on developer tastes.

My rules:

● If class contains complex
logic or class size > 300
lines

separate request.

● 2-3 classes per request

Split different tasks into
few requests

Kotlin conversion

Refactor + unit tests

Always check request
before requesting review

Help your reviewer:

to focus on serious errors

not be distracted by minor things
that you could have found if you
checked

!!!

Don't be afraid
of mistakes

Do not be upset, there are no mistakes
only for those who do nothing

● The number of null pointer exception has
been reduced to almost zero.

● Latest features such as coroutines can be
used now.

● The average file size has decreased by 21%.

Kotlin conversion

Eventbus disadvantages:

● Very complicated debug process

● High probability of error

● Changing in one place, can break
application in an unknown place

● Difficult to read code

Event bus to coroutines
migration

Coroutines allow us to write almost
synchronous code

● Easy to read

● Easy to debug

● Easy to test

New developers take less time to adapt

Protocol Buffers migration

Protocol buffers are Google's
extensible mechanism for serializing
structured data.

Reduce the transferred data size
and speed up requests.

Shared data models, defined once

50% faster

70% smaller

{
 "data": [{
 "type": "article",
 "id": 3,
 "attributes": {
 "title": "Hello droidcon!",
 "body": "Refresh, renew, refactor",
 "created": "2020-08-03T15:32:00.000Z",
 "updated": "2020-10-08T10:50:00.000Z"
 },
 "relationships": {
 "author": {"id": 18, "type": "auditor"}
 }
 }],
 "included": [
 {
 "id": 2,
 "type": "developer",
 "user": {
 "name": "Andrey",
 "age": 24,
 "gender": "male" }
 }
]
}

360 bytes - Json

158 bytes - Protobuf

56% smaller

Architecture
For testing

Classic MVVM

Databinding

Unit tests

Repository

Activity

Fragment

ViewModel

Layout
xml

Repository

LiveData

Databinding
Unit tests

Unit tests

🌯

@Deprecated

is your friend

Legacy code
1. Rename
2. Feature flag
3. Copy
4. Refactor
5. Tests

Naming/folder convention

Feature flags

Backend controlled
● Staging/Production
● Lunauts
● By App version
● iOS/Android/Web

Beta User - Opt in
User - Opt in

One team with champions
creates guidelines and
examples

Feature teams implement in
their area ��🏾 🚀

��🏻 🚀

��🏻 🚀
��🏾 🚀
��🏼 🚀

��🏽 🚀

��🏽 🚀
��🏽 🚀

��

󰦑

󰥮

No meeting Tuesday

Pod Frontend Code review

Pod Exchange

MoM
󰐕󰑠

󰏅

󰑒

��🇦
󰎟

󰐐

󰑠

Balance

Developer time

Tech debtSupport New features

20%?

Set an expectation that any changes to existing

functionality requires a refactor to new architecture.

New features are implemented in the new way.

Charles Okot

“

”

Refactoring is like brushing your teeth -

A little bit every day is better than

2 hours once a month.

Maia Grotepass

“

”

I 💖 Kotlin, testing and coroutines!“ ”

Future 🦄 Android Engineer

��🏽 🚀

CI / CD

Tests on
requests

Designers
Product Owner
Team

Debug
Every 2h

Internal
Alpha
Closed

Beta
Production
Public

�� ��

⏰

Work on V1.0.1

Roll out V1.0.1V1.0.1Roll out V1.0.0

Regular
releases

Feature
Flags

Team
culture

Balance

TrustChange

󰥲

󰥲󰥲 󰥲

󰥲󰥲

⚙
⚙
⚙

⚙
⚙
⚙

What next

Complete migration

● Onboarding screens
● MVVM everywhere
● Protobuf everywhere

More tests

● More Unit tests
● Integration tests
● Functional tests

Other

● Startup quicker and cleaner
● Better Dependency injection?
● Navigation?
● Next shiny thing?

Never stop refactoring

Questions

Thank you

